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Steady flow of an ir~viscid, incompressible two-phase magnetofluid with infinite 
electrical conductivity is treated. With one ignorable coordinate in a general 
orthogonal curvilinear system, general solutions of the equations, considering 
number density N constant throughout the motion, are obtained. 

1. INTRODUCTION 

Multiphase fluid phenomena are of extreme importance in various field 
of science and technology, such as geophysics, nuclear engineering, chemical 
engineering, etc. In recent years, a considerable amount of work has been 
devoted to dusty fluid flows due to the importance of such studies in many 
physical applications, ranging from fluidization problems to high-speed and 
dust hypersonic flows. Multiphase fluid systems are concerned with the 
motion of a liquid or gas containing immiscible inert particles. Of multiphase 
fluid systems observed in nature, blood flow, flow in a rocket chamber, dust 
in gas cooling systems to enhance the heat transfer process, movement of 
inert particles in the atmosphere, and movement of sand and other suspen- 
ded particles in beaches are the most common examples. Naturally, studies 
of these systems are mathematically interesting and physically useful. The 
presence of particles in a homogeneous fluid makes the dynamical study 
of a flow problem quite complicated. However, these problems are usually 
investigated under various simplifying assumptions. 

Saffman (1962) has formulated the equations of motion of a dusty 
fluid represented in terms of a large number density N(x, t) of very small 
spherical inert particles whose volume concentration is small enough to be 
neglected. It is assumed that the density of the dust particles is large 
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compared with the fluid density, so that the mass concentration of the 
particles is an appreciable fraction of unity. In this formulation, Sattman 
also assumed that the individual particles of dust are so small that Stokes' 
law of resistance between the particles and the fluid remains valid. Using 
the model of Sattman, several authors, including Michael and Miller (1966), 
Liu (1967), Debnath and Basu (1975), Barron and Hamdan (1989), and 
Thakur and Mishra (1988, 1989), have investigated various aspects of 
hydrodynamics and hydromagnetic two-phase fluid flows. 

In this paper, considering number density N constant throughout the 
motion, we obtain the general solutions of steady, inviscid, and incompress- 
ible hydromagnetic two-phase flows with one ignorable coordinate in an 
orthogonal curvilinear coordinate system. 

2. FUNDAMENTAL EQUATIONS 

We take the following assumptions to describe the motion of the mixed 
system of fluid and dust particles: 

(a) The fluid is incompressible and inviscid apart from fluid and dust 
particle interaction. 

(b) The particles are spheres and uniform in size. The number of 
particles is so large that the system of particles can be considered 
as a continuous medium. The velocity fluctuation of the dust 
particle at a given point, the interaction between the dust particles, 
and the bulk concentration of the dust particle are negligible. 

(c) The fluid and dust particle interaction follows Stokes' drag law. 

Under these assumptions, the equations describing steady motion of the 
system of the fluid and dust particles with infinite electrical conductivity in 
the presence of a magnetic field are 

div u = 0 (2.1) 

(u- grad)u = 1 Vp + K N  (v - u) + -~ curl H x H (2.2) 
P P P 

curl(u x H) = 0 (2.3) 

div(Nv) = 0 (2.4) 

re(v- grad) v = K ( u - v )  (2.5) 

div H = 0 (2.6) 

where u, v, H, p, and N are the fluid-phase velocity, the dust-phase velocity, 
the magnetic field, the fluid density, and the number density of dust particles, 
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respectively; P is the fluid pressure, /z  is the coefficient of  magnetic perme- 
ability, K is the Stokes coefficient of  resistance, and m is the mass of  a 
single dust particle. 

In this paper  we take N to be constant throughout  the motion. Now 
we consider that  the fluid-phase velocity u and dust-phase velocity v are 
everywhere parallel, and hence we have 

v x u = 0  (2.7) 

3. A J A C O B I A N  F O R M U L A T I O N  OF T H E  E Q U A T I O N S  

We consider a general orthogonal curvilinear coordinate system ~ ,  ~2, 
~3 with line elements hi (Xl, x2), h2(xl, x2), h3(Xl, x2), where coordinate x3 
is ignorable. The set of  coordinates (Xl, x2, x3) can be any one of the sets 
of  the familiar Cartesian (x, y, z), cylindrical (z, w, ~k), spherical (r, 0, $) ,  
spheroidal (~, 7, 4'), toroidal (u, v, r bipolar  (u, v, z), etc, coordinates. 
The particular geometry of  the physical problem under  consideration will 
indicate the choice of  a suitable system. In toroidal coordinates, 

a sinh v cos 
X 1 ~-- g/, X 2 = /), X 3 = ~D, x - 

cosh v -  cos u 

sinh v sin ~b sin u 
Y - -  Z - -  

cosh v -  cos u '  cosh v -  cos u 

with the line elements 
a 2 

h~(u, v) = h~(u, v) - 
(cosh v - c o s  u) 2 

a 2 sinh 2 v 
h~(u, v) 

(cosh v - c o s  u) 2 

or, in oblate spheroidal coordinates, x1=r x2---7, x3=~b, x =  
a cosh ~: cos 77 cos ~b, y = a cosh r cos 7 sin ~b, and z = a sinh r sin 7, with 
the line elements 

h12(r 7)  = h~(r 7) = a2(s inh2 r +sing 7) 

h32(~ :, 7) = a2 cosh2 ~ cos2 7 

are examples of  orthogonal  curvilinear coordinates Xl, x2, x3 where one of  
them (x3 = ~b) is ignorable. Hence the vectors u and v can be written as 

u = ~lU~ + ~2u2+ ~3u3 (3.1) 

V = e l ~ ) l  -~ e2~)2--]- e3 /33  ( 3 . 2 )  

where u~, u2, u3 and Vl, v2, v3 are the curvilinear components  of  u and v 
along the unit vectors el,  ez, e3, respectively. 
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The two conservation laws, equation (2.1) for the fluid phase and 
equation (2.4) for the dust phase, have the following forms: 

Equations (3.3) 
0(xl ,  x2) and I~(Xl, X2) such that (Tsinganos, 1982) 

Oxl (h2h3ul)+ (hlh3u2) =0 (3.3) 

( h2h3Vl) +0~22 ( hlh3v2) = 0 (3.4) Oxl 

and (3.4) imply, respectively, the existence of functions 

We notice that the contour O(xl, X2)= const or 4>(xl, x2)=const (which 
identify the projections of the fields on the surface x3 = const) define surfaces 
made up of fluid-phase streamlines or dust-phase streamlines. We will call 
the surfaces O(Xl, x2) = const the fluid-phase stream surfaces and the surface 
~b(Xl, x2) -- const the dust-phase stream surfaces. 

Using the results (3.5) and (3.6), we can write u and v from (3.1) and 
(3.2) as 

31 o~(Xl, x2) 32 o~(xl, x2) 
U(Xl, x2) - - -  ~" Sau3(x1, x2) (3.7) 

h2h3 Ox2 hlh3 OXl 

31 0 3 2 0 
v(xl, x2) q~(xl, x2) - -  ~b(x,, x2)+ ~3v3(xl, x2) (3.8) 

h2h3 0x2 hlh3 0Xl 

Equations (3.7) and (3.8) transform equation (2.7) as 

,1( . 0o)+,. 
ox -U  h2h  ,, o x j  

+ 33 (0xOl0~b a0 00_~1)= 0 (3.9) 
hlh2h~ Ox2 ON 2 

Thus, from (3.9) we have respectively 

1 (v3Off_u3Oga~=O (3.10) 
hlh3 \ OXl OXl] 

1 ( 0__~ __ U3 0 ( ~  = 0 (3.11) 
h2h3 v30x2 Ox2/ 

1 (0~XOl 0~b 00 0~X~l) =0  (3.12) 
hlh2h 2 OX2 OX2 

o~(x,, x~) -oO (xl, x~) 
h2h3u 1 , hlh3U 2 - (3.5) 

Oxl Ox2 

O•(Xl, X2) 06(Xl, X2) 
h2h3t)l , hlh3V 2 -  (3.6) 

Oxl Ox2 
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On writing (3.12) in Jacobian notation (A1), we have 

1 
hih2h~ [~' ~b] = 0 (3.13) 

If  we assume that the magnetic field is along a fixed direction (Suryanarayan, 
1965), equation (2.6) will imply that 

H .  grad H = 0 (3.14) 

and hence the momentum equation (2.2) for the fluid phase can be written 
as  

u .gradu=-lT(P +~-~-[HI2~ +KN (v-u) (3.15) 
\ p  zp / p 

Using equation (2.5) in (3.15), we obtain 

c u r l u •  IHl2+~-p N [ v l E ) k p  2 

mNcurl v • v (3.16) 
P 

Substituting the values of u and v from (3.7) and (3.8) in (3.16), we can 
write respectively, in the following form: 

1 ,.o,,.ro 

p Ox, ~xl h-~3Ox,l Ox2 h53 ~x2 

+~7~,~2 (h3u3) 2+ (h3v3) 2 (3.17) 
2h3 p 0X 1 

• (P+! lul~+~ 1.1~+-~-~- i,,I ~ ] Ox2 \p z zp zp I 
1 {~176 ~ . / ]  

=hih2h3 ~ ~ ~lh~-~xl Ox2 h-~3~x2 

p OX2 30Xl] aX2 \h2h3 

"1- ~'~"2~ 2 (h3u3)  2"1- (h3/93) 2 (3.18) 
2h3 p 
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and 

O___~ 0 (h3u3) 0~/ O 0~b O (h3/)3) 
OX 2 OX 1 OX 1 OX2 (h3u3) + Ox2 0x'-'~l 

04~ o 
(h303) = 0 

OX 1 OX 2 

Writing (3.19) in Jacobian notation, we have 

[h3u3, ~b] + [h3v3, ~b] =0 

Equations (3.7), (3.8), (3.13), (3.17), (3.18), and (3.20) 
equations of the present theory. 

(3.19) 

(3.20) 

are the basic 

4. SOLUTIONS OF THE STEADY HYDROMAGNETIC 
TWO-PHASE EQUATIONS 

Equations (2.1) and (2.4) have been solved and the result is given by 
equations (3.7) and (3.8), respectively. 

Equation (3.13) yields 

[~b, tp] =0  (4.1) 

The general solution of (4.1) is given by [el. (A3)] 

~b = ~b(O) (4.2) 

Equation (3.19) with the help of (4.2) yields [of. (A4)] 

[h3u 3 -t- h3t~r ~/] = 0 (4.3) 

which has the general solution 

h3(u 3 + 6t#/)3) = ~r~(l~) (4.4) 

where l~(0) is an arbitrary function of ~. 
Differentiating partially (3.10) and (3.11) with respect to xl and x2, 

respectively, and then subtracting, we get 

au 3 a~  ao3 ao au3 aqb au3 O~b (4.5) 
8X 2 0 X  1 OX 1 OX 2 19X 2 8X 1 OX 1 0 X  2 

This gives in Jacobian notation 

[v3 - ~b,u3, 0] = 0 (4.6) 

The general solution of (4.6) is given by 

v3 - tk, ua = ~:(tp) (4.7) 
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where ~(~b) is another arbitrary function of ~b. From (4.4) and (4.7), we obtain 

1 r n('/') (4.8) 
03-- 1-t- ~b~ L h3 .j 

n ( , )  1 In(O)  ] 
u3= h3 - ~ b r  L-'~3 ~b~ (4.9) 

Now equation (3.16) can be written in the form 

VB = (V Xv) xv+ mPN ux  (V xu) (4.10) 

where 

,ul2+ - 
m N  \ p  2 zp zp / 

Taking the dot product of u with (4.10), we get 

u . V B = u .  (Vxv) xv (4.11) 

This can be manipulated into the form 

1 f 2 2 u3 ~]1 (4.12) 
, /  

Using relation (3.20), we find that equation (4.12) becomes 

1 
[h3u3, ~b]} (4.13) [~, q,] = ~-~ {[h~v~, q,] + ~ 2 

Transforming to Xa-0 coordinates [of. (A7)], we get 

OB(x,,O) 1 {0_~ l 
- O X  1 - -  2h 2 [h3(xl, ~b)Va(Xl, ~b)] 2 

o 1 -1---[ha(x1, ~b)U3(Xl, 0 ) ]  2 
OXl 

where in taking the derivatives we take 0 fixed. Manipulating the right-hand 
side of this equation with the help of (4.4), we can write it as a partial 
derivative with respect to xl for ~ held constant: 

a ~5(,/,) a 
- -  B(Xl, ~b) = - -  (h3v3) (4.14) 
Oxl h3 Oxl 

By the use of equation (4.8) we obtain 

a B ( x l ,  q,) ~ ( q , )  o 
(In h3) (4.15) 

axl 1 + 4~ ax~ 
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The general solution of equation (4.15) is 

B = ~ 2 ( r  
1 + ~b~o In h3+F(tk) 

where F(~b) is a definite function of r 

Thakur and Mishra 

A P P E N D I X  

Here we give for the convenience of the reader some elementary, but 
very useful differential relations which we have used in the solution of the 
two-phase hydromagnetic equations. By definition, the Jacobian of two 
functions f ( x l ,  x2) and g(xl,  x2) is 

[f, g ] _  of ag o f  a_gg (A1) 
0X 1 0X 2 0X 2 OX 1 

The following relations are self-evident: 

[f, g] = - [ g , f ]  (A2) 

[f, g] = 0 ~ f  = f ( g )  (A3) 

[f, g + G] = [f, g] + [f, G] (A4) 

[f, gG] = [f, g]G+g[f ,  G] (A5) 

Let S(xl,  x2) and A(xl ,  x2) represent two arbitrary functions of the variables 
Xl and x2. The following are also evident: 

OS(x1, x2) OA(x1, x2) OS(x2, A) 
(A6) 

OX 1 OX 1 OA 

OS(x1, x2) tJA(x1, x2) OS(x~, A) 
- ( A 7 )  

Ox2 Ox2 OA 

where we have denoted the argument of each function to be regarded as 
independent variables. 
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